The enhancement by surfactants of hexadecane degradation by Pseudomonas aeruginosa varies with substrate availability.

نویسندگان

  • Wouter H Noordman
  • Johann H J Wachter
  • Geert J de Boer
  • Dick B Janssen
چکیده

The rhamnolipid biosurfactant produced by Pseudomonas aeruginosa influences various processes related to hydrocarbon degradation. However, degradation can only be enhanced by the surfactant when it stimulates a process that is rate limiting under the applied conditions. Therefore we determined how rhamnolipid influences hexadecane degradation by P. aeruginosa UG2 under conditions differing in hexadecane availability. The rate of hexadecane degradation in shake flask cultures was lower for hexadecane entrapped in a matrix with 6 nm pores (silica 60) or in quartz sand than for hexadecane immobilized in matrices with pore sizes larger than 300 nm or for hexadecane present as a separate liquid phase. This indicates that the availability of hexadecane decreased with decreasing pore size under these conditions. The rate-limiting step for hexadecane entrapped in silica 60 was the mass transfer of substrate from the matrix to the bulk liquid phase, whereas for hexadecane present as a second liquid phase it was the uptake of the substrate by the cells. Hexadecane degradation in batch incubations was accelerated by the addition of rhamnolipid or other surfactants in all experiments except in those where hexadecane was entrapped in silica 60, indicating that the surfactants stimulated uptake of hexadecane by the cells. Since rhamnolipid stimulated the degradation rate in batch experiments to a greater extent than any of the other 14 surfactants tested, hexadecane uptake was apparently more enhanced by rhamnolipid than by the other surfactants. Although rhamnolipid did not stimulate the release of hexadecane from silica 60 under conditions of intense agitation, it significantly enhanced this rate during column experiments in the absence of strain UG2. The results demonstrate that rhamnolipid enhances degradation by stimulating release of entrapped substrate in column studies under conditions of low agitation and by stimulating uptake of substrate by the cells, especially when degradation is not limited by release of substrate from the matrices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The enhancement by surfactants of hexadecane degradation by Pseudomonas

The rhamnolipid biosurfactant produced by Pseudomonas aeruginosa influences various processes related to hydrocarbon degradation. However, degradation can only be enhanced by the surfactant when it stimulates a process that is rate limiting under the applied conditions. Therefore we determined how rhamnolipid influences hexadecane degradation by P. aeruginosa UG2 under conditions differing in h...

متن کامل

Synthesis of rhamnolipid biosurfactant and mode of hexadecane uptake by Pseudomonas species

BACKGROUND Microorganisms have devised ways by which they increase the bioavailability of many water immiscible substrates whose degradation rates are limited by their low water solubility. Hexadecane is one such water immiscible hydrocarbon substrate which forms an important constituent of oil. One major mechanism employed by hydrocarbon degrading organisms to utilize such substrates is the pr...

متن کامل

Rhamnolipid stimulates uptake of hydrophobic compounds by Pseudomonas aeruginosa.

The biodegradation of hexadecane by five biosurfactant-producing bacterial strains (Pseudomonas aeruginosa UG2, Acinetobacter calcoaceticus RAG1, Rhodococcus erythropolis DSM 43066, R. erythropolis ATCC 19558, and strain BCG112) was determined in the presence and absence of exogenously added biosurfactants. The degradation of hexadecane by P. aeruginosa was stimulated only by the rhamnolipid bi...

متن کامل

Rhamnolipid biosurfactants produced by Renibacterium salmoninarum 27BN during growth on n-hexadecane.

A new strain Renibacterium salmoninarum 27BN was isolated for its capacity to utilize n-hexadecane as sole substrate. Growth on n-hexadecane was accompanied with the production of glycolipid surface active substances detected by surface pressure lowering and emulsifying activity. Glycolipid detection by thin layer chromatography and infrared spectra analyses showed for the first time that Renib...

متن کامل

Optimal conditions for enhancing sodium dodecyl sulfate biodegradation by Pseudomonas aeruginosa KGS

The anionic surfactant sodium dodecyl sulfate (SDS) was degraded by novel strain ofPseudomonas aeruginosa KGS under accession No. JQ328193, which was isolated from carwash wastewater. The purpose of this research was to study different optimization conditionsrequired for enhancing the biodegradation of sodium dodecyl sulfate P. aeruginosa KGS.Influence of different Physicochemical factors such ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biotechnology

دوره 94 2  شماره 

صفحات  -

تاریخ انتشار 2002